• 必赢贵宾会3003am
  • 经管邮箱
  • 教职工内网
  • 用户登录
  • EN
毛小介

管理科学与工程系    副教授

电话:(86)(10)62797044

办公室:李华楼B418

邮箱:maoxj@sem.tsinghua.edu.cn

开放时间:周二16:30 - 17:30或预约

教育经历

2016 ~ 2021 博士,统计学与数据科学,康奈尔大学

2012 ~ 2016 学士,数理经济与数理金融,武汉大学


更多

工作经历

2024.07 ~ 至今  (准聘)副教授,必赢贵宾会3003am管理科学与工程系

2021.07 ~ 2024.07  助理教授,必赢贵宾会3003am管理科学与工程系



更多

讲授课程

管理科学中的实证方法(博士)

数据分析:推断与决策(硕士)

概率论与数理统计(本科)



更多

研究领域

因果推断、数据驱动的优化决策


更多

学术成果

论文详见谷歌学术页面https://scholar.google.com/citations?user=XtSSJm0AAAAJ&hl=en&oi=ao


论文发表

  • Yichun Hu, Nathan Kallus, Xiaojie Mao, Yanchen Wu. Contextual Linear Optimization with Bandit FeedbackThe 38th Annual Conference on Neural Information Processing Systems, 2024. (中国计算机学会A类会议)

  • Guido Imbens, Nathan Kallus, Xiaojie Mao, Yuhao Wang. Long-term causal inference under persistent confounding via data combination. Accepted by Journal of the Royal Statistical Society Series B, 2024. (统计学国际四大期刊)

  • Nathan Kallus, Xiaojie Mao. On the Role of Surrogates in the Efficient Estimation of Treatment Effects with Limited Outcome Data. Accepted by Journal of the Royal Statistical Society Series B, 2024.(统计学国际四大期刊

  • Nathan Kallus, Xiaojie Mao, Masatoshi Uehara. Localized Debiased Machine Learning: Efficient Estimation of Quantile Treatment Effects and Beyond. Journal of Machine Learning Research, 2024. (中国计算机学会A类期刊)

  • Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara. Inference on Strongly Identified Functionals of Weakly Identified Functions. Conference on Learning Theory, 2023. (中国人工智能学会A类会议)

  • Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara. Minimax Instrumental Variable Regression and L2 Convergence Guarantees without Identification or Closedness. Conference on Learning Theory, 2023. (中国人工智能学会A类会议)

  • Nathan Kallus, Xiaojie Mao, Kaiwen Wang, Zhengyuan Zhou (2022). Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning. International Conference on Machine Learning, 2022. (中国计算机学会A类会议)

  • Nathan Kallus, Xiaojie Mao. Stochastic Optimization Forests. Management Science, 2022(UTD 24期刊)

  • Yichun Hu, Nathan Kallus, Xiaojie Mao. Fast Rates for Contextual Linear Optimization. Management Science (Fast Track), 2022. (UTD 24期刊)

  • Yichun Hu, Nathan Kallus, Xiaojie Mao. Smooth Contextual Bandits: Bridging the Parametric and Non-differentiable Regret Regimes. Operations Research, 2021. (UTD 24期刊,论文获得Finalist for Applied Probability Society 2020 Best Student Paper Competition). 

  • Nathan Kallus, Xiaojie Mao, Angela Zhou. Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination. Management Science Special Section on Data-Driven Prescriptive Analytics, 2022. (UTD 24期刊, Featured Article in Management Science Vol 68 Issue 3 with invited review at https://www.informs.org/Blogs/ManSci-Blogs/Management-Science-Review/If-You-Can-t-Measure-It-Bound-It-Credibly-Auditing-Algorithms-for-Fairness2).  

  • Nathan Kallus, Xiaojie Mao, Angela Zhou. Interval Estimation of Individual-Level Causal Effects Under Unobserved Confounding. The 22nd International Conference on Artificial Intelligence and Statistics, 2019.

  • Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, Madeleine Udell. Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved. ACM FAT* 2019: Conference on Fairness, Accountability, and Transparency in Machine Learning.

  • Nathan Kallus, Xiaojie Mao, Madeleine Udell. Causal Inference with Noisy and Missing Covariates via Matrix Factorization. The 32nd Annual Conference on Neural Information Processing Systems, 2018. (中国计算机学会A类会议) 


其他工作论文请见简历(https://cloud.tsinghua.edu.cn/f/a23b45043ed8466d844b/



更多

所获荣誉

科研项目

数据驱动的决策方法,国家自然科学基金(优秀青年科学基金项目),主持,2024 ~ 2026

基于数据结合的长期因果效应推断与决策,国家自然科学基金(青年科学基金项目),主持,2023 ~ 2025

面向供应链韧性与安全的行为决策理论与方法,国家自然科学基金(重大项目子课题),参与,2023 ~ 2027

硬件资源受限下的高效智能控制,科技部(科技创新2030重大项目),参与,2023 ~ 2025


奖项

必赢贵宾会3003am2023年度教学优秀奖

必赢贵宾会3003am2023年先进工作者,2023年科研优秀奖,2023年教学优秀二等奖

Applied Probability Society  Best Student Paper Competition, Finalist, 2020


更多

其他

指导学生:详情请见简历(https://cloud.tsinghua.edu.cn/f/a23b45043ed8466d844b/)


本人不定期有助研项目的机会,欢迎数理基础或编程能力扎实、有科研兴趣且自驱力强的本硕同学邮件联系我。请在邮件中附带简历和成绩单,并简要描述(1)上过的数学、概率统计、运筹优化、计算机科学相关的课程;(2)预计能投入的时间(如预计参与的期限以及参与期间每周大致能够投入的时间,请提供合理可行的估计);(3)考虑参加助研工作的动机(如个人兴趣、未来发展计划等)。


对于有意向申请管理科学与工程专业博士研究生的同学,请重点关注经管学院官网上的招生夏令营通知。夏令营一般在4 ~ 5月份报名,春季学期末正式举办,通过笔试、面试综合考核来招录次年秋季入学的博士研究生。九月份研究生推免会有额外补录机会,但录取名额一般较少。博士研究生招生由系招生委员会统一进行考核决定,本人不单独进行招生。


更多