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Abstract
This article exploits the ItoÃ 's formula to derive the conditional moments vector for
the class of interest rate models that allow for nonlinear volatility and flexible
jump specifications. Such a characterization of continuous-time processes by the
ItoÃ conditional moment generator noticeably enlarges the admissible set beyond
the affine jump-diffusion class. A simple generalized method of moments (GMM)
estimator can be constructed based on the analytical solution to the lower-order
moments, with natural diagnostics of the conditional mean, variance, skewness,
and kurtosis. Monte Carlo evidence suggests that the proposed estimator has
desirable finite sample properties relative to the asymptotically efficient maximum-
likelihood estimator (MLE). The empirical application singles out the nonlinear
quadratic variance as the key feature of the U.S. short-rate dynamics.

keywords: ItoÃ conditional moment generator, quadratic variance,
jump-diffusion process, generalized method of moments, Monte-Carlo study.

In modeling the short-term interest rate, researchers face the challenge of accom-
modating all relevant features in a single-model specification. Those features
include but are not limited to (1) short-term persistence, (2) long-run mean rever-
sion, (3) nonlinear state dependence in volatility, and (4) non-Gaussian features in
skewness and kurtosis. The celebrated Cox, Ingersoll, and Ross (CIR) model [Cox,
Ingersoll, and Ross (1985)] and its various extensions, although appealing in their
general equilibrium nature and closed-form solution, have difficulty in fitting all
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these features simultaneously for the U.S. interest rate data [Brown and Dybvig
(1986)].1 Rigorous specification tests using historical data tend to reject the
square-root model [AõÈt-Sahalia (1996b), Conley et al. (1997), Gallant and Tauchen
(1998)]. Although having an inherent advantage in fitting features 1 and 2, as
indicated in the literature, the CIR-type model fails to capture the rich volatility
dynamics and the nonlinear non-Gaussian features.

Consequently efforts to modify the square-root model largely concentrate on
more flexible specifications of the volatility dynamics. It is clear that the CIR model is
just one special case of the so-called linear constant elasticity of volatility (CEV)
specification, where the elasticity equals one-half. Recent comparative studies
[Chan et al. (1992), Conley et al. (1997), Tauchen (1997), Christoffersen and Diebold
(2000)] found that an elasticity around 1.5 is more desirable. Alternatively one can
estimate the volatility function nonparametrically [AõÈt-Sahalia (1996a), Stanton
(1997), Jiang and Knight (1997), Jiang (1998), Bandi (2002), Bandi and Phillips
(2003)]. The empirical findings along this line suggest that the square-root model
fits reasonably well for the medium range of interest rates, but the estimated non-
linearityat both thehigh andlow ends is neither accurate nor conclusive. A pertinent
approach is to introduce an unobserved stochastic volatility factor into the diffusion
function, which finds considerable support in empirical studies [Andersen and
Lund (1996, 1997)].2 The jump-diffusion approach to interest rate modeling (and
bond pricing exercise) is of more recent origin [Baz and Das (1996), Das (1998)],
and its general equilibrium formulation is explored by Ahn and Thompson (1988).3

The innovation of this article is to generate the parametric conditional
moments using only the ItoÃ 's formula and to construct a computationally efficient
generalized method of moments (GMM) estimator. Maximum-likelihood estima-
tion (MLE) is available only for a very restricted class of jump-diffusion models
[Lo (1988)]. Our method differs with the infinitesimal generator of Hansen and
Scheinkman (1995) (GMM) in that it fully exploits the conditional information,
does not rely on simulations as do Duffie and Singleton (1993) [simulated method
of moments (SMM)], uses model-dependent moments instead of data-dependent
moments [Gallant and Tauchen (1996)] [efficient method of moments (EMM)],
generalizes to an arbitrary number of moments rather than only to conditional
mean and variance [Fisher and Gilles (1996)] [quasi maximum likelihood (QML)],
and has reliable small sample properties in comparison with the nonparametric

1 The bivariate extensions of the CIR specification [Chen and Scott (1993), Gibbons and Ramaswamy (1993),

Pearson and Sun (1994)] also meet with poor empirical performance. Duffie and Singleton (1997) found

favorable evidence for a two-factor CIR model with serially correlated error structure. Dai and Singleton

(2000) estimated more flexible three-factor affine specifications similar to Chen (1996) and Balduzzi et al.

(1996) for interest rate swap data after 1987.
2 This article focuses on the maximum flexibility in the univariate setting, and the extension to multivariate

or stochastic volatility is deferred to future research.
3 Recently there is a growing literature on jump-diffusion interest rate modeling [see Chacko and Das

(1999), Johannes (1999), Piazzesi (2000), among many others], which ranges from short-rate dynamics to

fixed-income derivatives, from market-implied jumps to macroeconomic announcements, and from

parametric to nonparametric specifications.
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(NP) approach [AõÈt-Sahalia (1996a)]. As shown below, our method reduces a
complicated task of solving a stochastic differential equation (SDE) to a simple
matrix solution of an ordinary differential equation (ODE) system. The computa-
tional burden is reduced to a minimum of elementary algebra.4 Another important
advantage is that the characterization of short-rate processes by the ItoÃ 's approach
allows for nonlinear volatility and semiparametric jump specifications. Within the
univariate paradigm, nonlinearity is indispensable to the successful modeling of
the U.S. interest rate dynamics. In literature, the most closely related method is to
identify the stochastic differential equations with an orthogonal series representa-
tion [Hansen, Scheinkman, and Touzi (1998)], which is attributed to the general-
ized eigenvalue-eigenfunction technique [Wong (1964)].

We further justify the aforementioned methodology by a numerical exercise
and illustrate by an empirical application. Monte Carlo evidence suggests that the
finite sample efficiency of the proposed GMM estimator is comparable to the
asymptotically efficient MLE, the sampling t-statistics of individual parameters
are not far away from the normal reference distribution, and the GMM test of
overidentifying restrictions has a typical upward bias but with reasonable magni-
tude. When applied to U.S. short-term interest rates from 1954 to 2002, both the
square-root model and the restricted CEV model are rejected outright. Adding
jumps shows some improvement, but only the quadratic variance model cannot
be rejected at the 1% significance level. U-shaped volatility and nonlinear
higher-order moments seem to be the main challenges of fitting the U.S. short-rate
dynamics, in addition to the well-known linear mean persistence.

The remainder of this article is organized as follows: Section 1 derives the
conditional moments for an admissible class of processes including square-root,
restricted CEV, jump-diffusion, and quadratic variance. Section 2 builds an
easy-to-implement GMM estimator and provides some finite sample evidence.
Section 3 applies the estimating procedure to the four models mentioned above
and contrasts the specification differences using the conditional moment profiles.
Section 4 concludes.

1 ITOÃ CONDITIONAL MOMENT GENERATOR

This section outlines a strategy to derive the conditional moments simultaneously
for certain continuous-time processes, relying only on the ItoÃ 's formula and the
specifications of drift, diffusion, and jump functions. The resulting characteriza-
tion not only nests the popular affine jump-diffusion class, but also features non-
linear quadratic variance and semiparametric flexible jumps.

4 Alternatively, an equivalent spectral method of moments is developed by exploiting the closed-form

conditional characteristic functions for the affine jump-diffusion model [Chacko and Viceira (1999),

Singleton (2001), Jiang and Knight (2002), Carrasco et al. (2002)]. However, the selection of spectral

moments remains as a difficult challenge, whereas in the classical method of moments, a natural choice

is the lower-order moments. Moreover, a strategy to derive moments using the ItoÃ 's formula alone and

not relying on the characteristic function or moment-generating function may be more desirable for

certain nonstandard processes, for example, the quadratic variance model discussed in this article.
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1.1 A General Characterization of Admissible Processes

Suppose that the evolution of the state variable (i.e., the short rate) is governed by
a reduced-form jump-diffusion process

drt � �tdt� �tdWt � JtdN��tt�, �1�
where Wt is a standard Brownian motion, N(�tt) is a Poisson driving process with
an intensity function �t, and Jt is the jump size with distribution �(Jt). Note that
both the jump rate and jump size are allowed to be state dependent, but condi-
tionally independent of each other and with respect to the Brownian motion.
Equation (1) must satisfy certain regularity conditions, the critical ones being (a)
both �t and �t are Lipschitz continuous and (b) �t and �(Jt) are F tÿ measurable.

The strategy is to solve all the conditional moments up to the Kth order
simultaneously by first applying the generalized ItoÃ 's lemma [Merton (1971),
Lo (1988)] to each rk

T for k� 1, 2, . . . , K, and then take the conditional
expectation

Et�rk
T� � rk

t � Et

Z T

t
�ukrkÿ1

u � 1

2
�2

uk�kÿ 1�rkÿ2
u

��
��uEJ��ru � Ju�k ÿ rk

u�
�

du

�
: �2�

Interchanging the expectation and integration operators, and taking the derivative
with respect to time T, we arrive at a differential equation system

dEt�rk
s�

ds
� Et �skrkÿ1

s � 1

2
�2

s k�kÿ 1�rkÿ2
s � �s

Xk

i�1

k

i

� �
rkÿi

s EJ� Ji
s�

" #
, �3�

with boundary condition Et�rk
t � � rk

t The following proposition characterizes
the class of jump-diffusion processes that sustain a closed-form solution to
Equation (3).

Proposition 1 (characterization). The sufficient condition for the K-dimensional ordin-
ary differential equation system [Equation (3)] to have a first-order linear solution is to
restrict the drift, diffusion, and jump functions in the following forms:

(i) �t � ���ÿ rt�;
(ii) �t �

���������������������������������
�0 � �1rt � �2r2

t

p
; and

(iii) �tEJ� Jk
t � �

Pk
j�0 Jkjr

j
t.

Many linear or nonlinear restrictions need to be imposed to ensure the existence
and identification conditions, for example, the sign constraints on �, �, �0, �1, �2,
and the zero constraints on some Jkj. The proof only involves a straightforward
verification, and thus is omitted.5

5 The necessary conditional for the K-dimensional ordinary differential equation system [Equation (3)] to

have a first-order linear solution is to require the term

�skrkÿ1
s � 1

2
�2

s k�kÿ 1�rkÿ2
s � �s

Xk
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� �
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to be a kth-order polynomial of rs, which is trivial and not as informative as the sufficient condition.
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For the admissible process under Proposition 1, the K-vector of its conditional
moments Et�Rs� � �Et�rs�, Et�r2

s �, . . . , Et�rK
s ��0 is characterized by a linear differen-

tial equation system,

dEt�Rs�
ds

� A���Et�Rs� � g���, �4�
where A(�) is a K�K lower-triangular matrix and g(�) is a K� 1 vector. Both A(�)
and g(�) are nonlinear functions of the parameter vector �� [�, �, �0, �1, �2, J10, . . . ,
JKK]0, defined by the underlying jump-diffusion process [Equation (1)]. Since the
coefficients of such a nonhomogeneous linear first-order differential equation do
not depend on time, one obtains the following closed-form solution,

Et�RT� � e�Tÿt�A���Rt � Aÿ1����e�Tÿt�A��� ÿ I�g���, �5�
where I is the K�K identity matrix and e( � ) denotes the matrix exponential.

There are some advantages in using the ``ItoÃ transformation'' to generate the
conditional moments. From the perspective of richer dynamics, although the drift
function has to be restricted as linear, the diffusion function can be nonlinear, and
the jump function only requires the specification of its moments. More detailed
examples are examined in the next subsection to illustrate the enhanced flexibility
of such an ItoÃ characterization. From the perspective of easier implementation,
the calculation of moments in a typical matrix programming language remains a
one-line code as Equation (5), and the computation of each entry of A( � ) and
g( � ) in Equation (3) does not require differentiation; whereas using the condi-
tional moment-generating function involves messy high-order derivatives. Once
computed, a moment-based estimator (like GMM) is readily available, while a
likelihood-based method requires the Fourier inversion of the characteristic
function. It is also possible to apply the ItoÃ transformation to processes that
lack analytical solution to the moment-generating function. The major dis-
advantage of relying on a potentially limited set of moments is the possible loss
of estimation efficiency relative to MLE. To address this concern, the next
section designs a GMM estimator and quantifies its adequate finite sample
performance.

1.2 Leading Empirical Examples

To illustrate the applicability of the proposed methodology, here we present
several specifications that are useful to model the short-term interest rate. Only
the solutions to the first four moments are spelled out, as the higher-order
moments are trivial extensions.

1.2.1 Flexible jump-diffusion process We start with a simple jump-diffusion
process,

drt � ���ÿ rt�dt� � ����
rt
p

dWt � JtdN��tt�, �6�
where �t� � and Jt is specified by its four moments. Although the diffusion part of
this model is affine, the state variable may not be affine if the jump-size moments are
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state dependent, as allowed by Proposition 1. The solution to its first four condi-
tional moments in the form of Equation (5), can be characterized by the matrix A(�),

ÿ�� �E� J� 0 0 0

2��� �2 ÿ2�� �P2
i�1

2
i

ÿ �
E� Ji� 0 0

0 3��� 3�2 ÿ3�� �P3
i�1

3
i

ÿ �
E� Ji� 0

0 0 4��� 6�2 ÿ4�� �P4
i�1

4
i

ÿ �
E� Ji�

266664
377775,

and the vector g(�),

��

0

0

0

26664
37775:

If we specialize to the case of uniform jump-size distribution (Jt � U[art, brt]), the
moments of the jump size are, respectively, E� J� � ��b2 ÿ a2�=2�bÿ a��rt,
E� J2� � ��b3 ÿ a3�=3�bÿ a��r2

t , E� J3� � ��b4 ÿ a4�=4�bÿ a��r3
t , and E� J4� � ��b5ÿ

a5�= 5�bÿ a��r4
t .

Two important points are worth noting here. First, the model is not affine, as
the conditional variance is not linear but quadratic in the state variable, which is
qualitatively similar to the quadratic variance diffusion model discussed next.
Second, the particular type of state dependence of the jump size rules out the
possibility of negative interest rate, under the mild restriction that ÿ1�
a<b<�1, which is easily enforcible during estimation. Negative interest rates
are difficult to deal with for certain affine specifications and are conceptually
problematic in a nominal economic environment.

1.2.2 Quadratic variance diffusion model An important alternative to the affine
variance model is the ``quadratic variance'' process, defined as

drt � ���ÿ rt�dt�
���������������������������������
�2

0 ÿ �2
1rt � �2

2r2
t

q
dWt: �7�

No sign restrictions are imposed in the GMM estimation procedure, but are
adopted here in line with the actual result to highlight some nice properties ---- non
zero volatility when the rate level approaches zero, high volatility when the rate
level is high, and comparable scale of the local variance parameter with that of the
square-root model.

For this quadratic variance model, the conditional moments are characterized
by Equation (5) in terms of

A��� �

ÿ� 0 0 0

2��ÿ �2
1 ÿ2�� �2

2 0 0

3�2
0 3��ÿ 3�2

1 ÿ3�� 3�2
2 0

0 6�2
0 4��ÿ 6�2

1 ÿ4�� 6�2
2

26664
37775
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and

g��� �

��

�2
0

0

0

26664
37775:

Note that the solution structure is similar for both the jump diffusion and the
quadratic variance models, and that the only difference is in each entry. This
feature makes the numerical calculation of the moments straightforward and
convenient.

The quadratic variance model has several important advantages. First, the
model is not affine, hence its moment-generating function or characteristic func-
tion may not be easy to derive. Then the ItoÃ conditional moment generator may be
the only choice among all the non-simulation-based methods to calculate the
moments. Second, there is a great deal of debate about whether the volatility is
linear or nonlinear, for example, the `U'-shaped volatility pattern reported by
AõÈt-Sahalia (1996a). Here we can provide a simple parametric nonlinear alterna-
tive and a feasible GMM estimator with conditional moment-based diagnostics.
Third, the quadratic variance specification seems to nest several famous short-rate
models, namely, log-linear (�0��1� 0), Ornstein--Uhlenbeck (�1��2� 0), and
square-root (�0��2� 0 and reversing the sign of �2

1). Of course, the obvious
disadvantage is that the bond pricing solution is not easily obtained except for
using Monte Carlo simulation. Nevertheless, the empirical evidence of Section 3
seems to suggest that nonlinear quadratic variance is indispensable in modeling
the univariate short-rate dynamics.

1.2.3 Cubic or transformable CEV model Some models are not directly solvable
by the ItoÃ conditional moment generator, but can be ``reduced'' to the tractable
cases by appropriate transformations. For a detailed discussion on the reducibility
technique, see Chapter 4 of Kloeden and Platen (1992). Consider the following
nonlinear drift and CEV specification,

drt � ���r2ÿ1
t ÿ rt�dt� �rt dWt, �8�

which has a positive starting value and satisfies rt 2 (0, �1), under appropriate
parameter restrictions. Note that the cross-restriction on parameter  between
drift and diffusion is required for the reducibility, and may prove to be empirically
too restrictive relative to the standard linear drift CEV model. Marsh and
Rosenfeld (1983) first proposed such a modeling strategy and conducted MLE
for distinct values of � 0, 0.5, 1. Eom (1997) studied the distributional properties
and the optimal GMM instruments for  2 [0, 1). Ahn and Gao (1999) examined
the term structure implications for the case of � 1.5 and estimated the model
with GMM. The GMM estimators adopted above were based on the time discre-
tization of the diffusion process and relying on the approximate first and second
moments.
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Using the transformation xt � r�t , which is a state-preserving transformation
when rt2 (0, �1) and  2 [0, 1) or  2 (1, �1), one arrives at the familiar
square-root model,6

dxt � a�bÿ xt�dt� c
����
xt
p

dWt: �9�
The above transformation can be characterized by the following proposition

Proposition 2 (transformation) The mappings between the CEV process of
Equation (8) and the square-root model of Equation (9) are

� � 2�1ÿ �
a � 2�1ÿ ��

b � �� �1ÿ 2��2

2�

c � 2�1ÿ ��:

�10�

The proof is a straightforward application of the ItoÃ's lemma, and is available from
the author upon request. The solution to conditional moment of the transformed
process xt is a special case of the jump-diffusion process of Equation (6) without
jumps (letting �t� 0 would be sufficient). The fourth parameter  in the
nonlinear-drift CEV model of Equation (8) is identified through the nonlinear
but monotonic transformation xt � r�t , given that rt2 (0, �1).

2 ESTIMATION STRATEGY AND MONTE CARLO EVIDENCE

Deriving the conditional moment restriction [Equation (5)] only achieves half of
the task for estimating the underlying continuous-time model. The other half rests
on designing an appropriate estimator with desirable large and small sample
properties. The purpose of this section is to outline an easy-to-implement GMM
estimator based on the moment condition solution of Equation (5), and to assure
the readers that the estimator performs reasonably well for the benchmark
square-root model under some empirically plausible scenarios.

2.1 The GMM Estimator

The conditional moments solution [Equation (5)] can be spelled out as a vector
autoregressive (VAR) formula,

Et�ht�1���� �

Et�rt�1�
Et�r2

t�1�
Et�r3

t�1�
Et�r4

t�1�

26664
37775ÿ

d11 0 0 0

d21 d22 0 0

d31 d32 d33 0

d41 d42 d43 d44

26664
37775

rt

r2
t

r3
t

r4
t

26664
37775ÿ

d01

d02

d03

d04

26664
37775� 0, �11�

6 When � 1, the nonlinear CEV process of Equation (8) is reduced to the log-normal process

drt��(�ÿ 1)rtdt� �rtdWt, and the parameters � and � are not separately identifiable.
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which is a recursive simultaneous equation system, and its unrestricted version
can be estimated by the OLS. To form a GMM estimator, a natural choice of
instruments is the constant one and the lagged variables, hence the moment
condition vector (with a total of 14 equations).

ft��� �

�E�rt�1� ÿ rt�1��1, rt�0
�E�r2

t�1� ÿ r2
t�1��1, rt, r2

t �0
�E�r3

t�1� ÿ r3
t�1��1, rt, r2

t , r3
t �0

�E�r4
t�1� ÿ r4

t�1��1, rt, r2
t , r3

t , r4
t �0

26664
37775: �12�

By construction E[ft(�0)]� 0, and the corresponding GMM or minimum chi-square
estimator is defined by �̂T � arg min gT���0WgT���, where gT(�) refers to the
sample mean of the moment conditions, gT��� � 1=T

PTÿ1
t�1 ft���, and W denotes

the asymptotic covariance matrix of gT(�0) [Hansen (1982)]. An iterative estimator
of W is adopted here; and since the error is not serially correlated, only the
heteroscedasticity needs to be accounted for. Under standard regularity condi-
tions, the minimized value of the objective function (normalized by the sample
size) is asymptotically distributed as a chi-square random variable, which allows
for an omnibus test of the overidentifying restrictions. Moreover, inference
regarding individual parameters is readily available from the standard formula
of the asymptotic variance-covariance matrix, (@ft(�)/@�0W@ft(�)/@�)/T.

2.2 Considerations for Identification and Efficiency

Identification, or global identification, is equivalent to the assumption that the
GMM estimator achieves a unique minimum at some �02B, where B is a
compact set. In the unrestricted recursive VAR model [Equation (11)], the total
number of identifiable parameters is 14, which can be easily verified by the
standard order and rank conditions. Since the underlying jump-diffusion model
is nonlinear, the identification issue becomes more complicated ---- on the one
hand, the restricted nonlinear dynamics may not be able to identify as many as
14 parameters; on the other hand, a nonlinear structure usually helps to identity
more parameters than a linear structure. There is not much theoretical guidance in
literature on how to verify the identification condition for a nonlinear model
before the model is actually estimated. However, there is a sufficient condition ----
plim(@gT/@�0WT@gT/@�)/T being nonsingular ---- that can be numerically verified
with the estimation result from a given data sample. It is equivalent to the more
primitive condition of local identification that the gradient is of full column rank
and the Hessian is negative definite. In practice, all the empirical examples seem
not to violate this sufficient condition, except a variation of the jump-diffusion
model with both the jump-rate and jump-size parameters being state-independent
constants.

Following Hansen (1985) and Hansen, Heaton, and Ogaki (1988), the condi-
tional moment restriction Et[ht�1(�)]� 0 indicated by Equation (11) implies an
efficient choice of instruments as Et[@ht�1(�0)/@�]vart[ht�1(�0)]ÿ1. In theory, such
a choice of instruments should be ideal, but in practice, other considerations may
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favor the natural choice of Equation (12). First, the optimal instruments involve an
unknown true distribution parameter �0, which has to be approximated in the
GMM estimation procedure. Second, to calculate the optimal instruments one
needs to solve for eight lower-order moments if one uses only four lower-order
moments in the estimation, which is trivial analytically using the ItoÃ approach, but
may be numerically unstable for empirical datasets. Further, there is a logical
inconsistency ---- one has the knowledge of eight order moments but does not use it
as the moment condition restriction. Meddahi and Renault (1997) proposed an
interesting treatment that reduces the information of the third and fourth condi-
tional moments to the unconditional skewness and kurtosis, and achieves the
efficient estimates of conditional mean and variance. The GMM estimator imple-
mented here explicitly incorporates the conditional third and fourth moments and
is conceptually related to their efficient estimation of the first two conditional
moments. The relative efficiency of the proposed GMM estimator can be judged in
a Monte Carlo setting, against the asymptotically efficient MLE, which is theore-
tically superior to GMM for a given set of moment restrictions with optimal
instruments.

2.3 Monte Carlo Evidence

To assess the finite sample performance of the proposed GMM estimator, a limited
Monte Carlo study is conducted here for the benchmark square-root model,
drt � ���ÿ rt�dt� � ����

rt
p

dWt, in comparison with the MLE estimation result
reported by Durham and Gallant (2002). There are six scenarios chosen in their
article, with varying degrees of persistence and volatility, and a fixed long-run
mean of 6% I adopted the exact same setup with 1000 observations in each random
sample and a total of 512 Monte Carlo replications. To avoid the discretization bias,
I simulate the square-root model from the exact noncentral chi-square distribution

f�rt��jrt;�, �, �� � ceÿuÿv v

u

� �q=2

Iq�2
������
uv
p �, �13�

where q� 2��=�2ÿ1, c� 2�=�2�1ÿeÿ��), u� crt eÿ��, v� crt��, and
Iq( � ) is a modified Bessel function of the first kind with a fractional order q [Oliver
(1972)]. A composite method of generating random numbers [Devroye (1986)] is
adopted here after transforming the above density function into

f�y� �
X1
j�0

y j��ÿ1eÿy

ÿ� j� �� �
ujeÿu

j!
�
X1
j�0

gamma�yj j� �, 1� � Poisson� jju�, �14�

with y� v and �� q� 1. In practice, one first draws a random number j from the
Poisson(jju) distribution, then draws another random number y from the
Gamma(yj j��, 1) distribution, and finally calculates the state variable rt��� y/c.
See Zhou (2001) for implementation detail.

Table 1 compares the parameter estimates of the proposed GMM estimator
in this article with those of the MLE estimator under the six scenarios (a--f ) in
Durham and Gallant (2002). In terms of bias, only the mean-reversion parameter �
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has a sizable upward bias when the persistence level is high (scenarios a, b,
and d) ---- about 10% of the parameter value for MLE and about 20% for GMM;
while for the less-persistent scenarios (c, e, and f ), the bias is noticeably reduced.
This is a classical case of finite sample bias in estimating the AR(1) coefficient for
the near-unit-root processes. For the long-run mean parameter � and the local
variance parameter �, MLE has negligible positive bias and GMM has negligible
negative biases. In terms of relative efficiency, the proposed GMM estimator is
remarkably close to the asymptotically efficient MLE. The root mean squared error
of GMM is at most 10% higher than that of MLE for most parameters in the
persistent cases (scenarios a, b, and d), and is practically indistinguishable for
most parameters in the less-persistent cases (scenarios c, e, and f). Figure 1 reports

Table 1 Monte Carlo experiment.a

True value

MLE

mean bias

GMM

mean bias

MLE

root-MSE

GMM

root-MSE

Scenario (a), �� 1/12, df� 5.33

�� 0.50 0.0489 0.0828 0.1344 0.1473

�� 0.06 0.0006 ÿ0.0027 0.0080 0.0086

�� 0.15 0.0002 ÿ0.0028 0.0034 0.0046

Scenario (b), �� 1/12, df� 2.48

�� 0.50 0.0597 0.1036 0.1413 0.1697

�� 0.06 ÿ0.0003 ÿ0.0052 0.0114 0.0118

�� 0.22 0.0001 ÿ0.0045 0.0054 0.0075

Scenario (c), �� 1/12, df� 133.33

�� 0.50 0.0438 ÿ0.0042 0.1299 0.1221

�� 0.06 0.0001 ÿ0.0000 0.0016 0.0017

�� 0.03 0.0002 ÿ0.0003 0.0007 0.0008

Scenario (d), �� 1/12, df� 4.27

�� 0.40 0.0458 0.0892 0.1210 0.1446

�� 0.06 0.0008 ÿ0.0046 0.0102 0.0102

�� 0.15 0.0001 ÿ0.0029 0.0035 0.0048

Scenario (e), �� 1/12, df� 53.33

�� 5.00 0.0151 0.0169 0.4630 0.4580

�� 0.06 0.0001 ÿ0.0002 0.0008 0.0009

�� 0.15 0.0000 ÿ0.0040 0.0043 0.0059

Scenario (f ), �� 2, df� 53.33

�� 0.50 0.0013 0.0283 0.0430 0.0483

�� 0.06 0.0004 ÿ0.0022 0.0018 0.0029

�� 0.15 0.0004 ÿ0.0041 0.0056 0.0066

aThis table compares the finite sample performance of the GMM estimator proposed in this article with that

of the MLE estimator provided by Durham and Gallant (2002). � stands for the discrete sampling interval

and df for the degree of freedom of the implied noncentral chi-square distribution. The random sample size

is chosen as 1000 and the number of Monte Carlo replicates is 512. Here we report the mean bias and root

mean squared error.
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the GMM test of the overidentifying restrictions, which exhibits a typical
overrejection bias, but with a reasonable size comparing with the reference level.
The sampling distribution of the t-test statistics is graphed in Figure 2, indicating
that the finite sample distortion is rather small compared with the reference
standard normal distribution.

Figure 1 GMM specification test of overidentifying restrictions.
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3 EMPIRICAL APPLICATION

In this section, the ItoÃ moment generator and the related GMM estimator are
applied to the empirical U.S. interest rate data. The weekly 3-month Treasury
bill rate from January 1954 to July 2002, totaling 2504 observations, is obtained

Figure 2 `̀ - -'' normal (0, 1) reference density; ``----'' t-test statistics.
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from the Federal Reserve Bank of St. Louis public website. The time-series plot is
given in Figure 3 and the summary statistics are reported in Table 2. The short rate
exhibits the typical features found in literature ---- high persistence (autoregressive
coefficients close to one), high volatility (standard deviation 277 basis points),
moderately high skewness (1.14), and kurtosis (4.87). I will focus on the estimation
result of the four empirical examples ---- including the benchmark CIR model ---- -
presented in Section 2, and illustrate how to use the conditional moment functions
to further compare different model specifications.

3.1 Estimation Result

The GMM estimator designed in Section 2 is applied to the four candidate models
discussed in Section 2: square-root, restricted CEV, jump diffusion, and quadratic
variance.7 The results are summarized in Table 3.

Figure 3 Time series plot of the short-term interest rate.

7 As pointed out by a referee, one could estimate a comprehensive model nesting both time-varying jumps

and quadratic variance. I found out that such a specification is not empirically identifiable by the GMM

estimator. My intuition is that the particular jump and diffusion specifications adopted here produce the

similar quadratic conditional variance. Therefore they are substituting for each other, instead of being

complementary. This can be easily seen from the diagnostic conditional moment graphs in the next

subsection.
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Table 3 Empirical estimation results.a

Square root Nonlinear CEV Jump-diffusion Quadratic variance

�� 0.0020

(0.0013)

0.0017

(0.0010)

0.0005

(0.0001)

0.0010

(0.0002)

�� 0.0497

(0.0131)

0.0458

(0.0128)

0.0995

(0.0186)

0.0669

(0.0016)

�� 0.0062

(0.0002)

0.0059

(0.0002)

0.0031

(0.0012)

� 0.4825

(0.0028)

�� 0.0381

(0.0025)

a� 0.2196

(0.0265)

�0� 0.0015

(0.0002)

�1� 0.0097

(0.0005)

�2� 0.0412

(0.0006)

�2� 49.3617 48.5714 31.6703 21.1222

df� 11 10 9 9

p value� 0.0000 0.0000 0.0002 0.0121

aThis table presents the main empirical results of the four model specifications discussed in Section 2 and

estimated by the GMM estimator outlined in Section 3.

Table 2 Summary statistics of three-month Treasury
bill rates.a

Moments and quantiles jth Order autocorrelations

Mean 0.0542 �0 1.0000

Std. Dev. 0.0277 �1 0.9964

Skewness 1.1414 �2 0.9912

Kurtosis 4.8728 �3 0.9856

Minimum 0.0058 �4 0.9798

5%-qntl. 0.0171 �5 0.9734

25%-qntl. 0.0347 �6 0.9667

Medium 0.0504 �7 0.9600

75%-qntl. 0.0689 �8 0.9537

95%-qntl. 0.1045 �9 0.9477

Maximum 0.1676 �10 0.9418

aThe table summarizes the weekly U.S. 3-month Treasury bill rates

from January 1954 to July 2002 with a total of

2504 observations. The data are obtained from the public website of

the Federal Reserve Bank of St. Louis.
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The standard square-root model is strongly rejected by the GMM specification
test, with a chi-square (df� 11) of 49.36. The long-run mean parameter (0.0497) is
about 50 basis points lower than the sample average (0.0542), the mean-reversion
parameter is very low (0.0020) and imprecisely estimated with standard error
0.0013, and the local variance parameter is also lower ---- 0.0062 implies an uncondi-
tional standard deviation of 0.0219 versus the sample standard deviation of 0.0277.

The nonlinear-drift CEV model is also strongly rejected with a chi-square
(df� 10) of 48.57. Although most parameters are accurately estimated, the model
also has a difficulty in nailing down the mean-reversion parameter � (0.0017 with
standard error 0.0010). The restricted CEV model accurately estimates the elasti-
city parameter as 0.4825 with standard error 0.0028, which confirms the empirical
finding by Eom (1997). All other parameter estimates are close to and/or slightly
lower than their square-root counterparts.8

The jump-diffusion model is implemented here with a constant jump rate �
and a uniform jump size [ÿart, art]. The symmetry restriction on jump sizes is
required to ensure identification. The result predicts roughly two jumps per year;
with a state-dependent jump size of �119 basis points at the sample average
(0.0542), �13 basis points at sample minimum (0.0058), and �368 basis points at
sample maximum (0.1676). Such a jump pattern is more realistic than the constant
jump-size distribution, and can rule out the negative interest rates, which can be
quite troublesome in a nominal economic environment. Nevertheless, the model
is rejected at a p-value of 0.0002, and the parameter � is unconvincingly large
(0.0995).

The quadratic variance model has the best perfomance and is not rejected at
the 1% significance level (p� .0121). All the parameter estimates are highly sig-
nificant. The estimates of the drift parameters fall between the square-root model
(similar to the CEV model) and the jump-diffusion model. The parameter esti-
mates of the diffusion function guarantee that (a) instant variance does not admit
negative value, (b) minimum volatility is achieved at a positive short-rate level,
and (c) volatility increases more when the short-rate level is high and increases
less when the short-rate level is low (see the conditional moment graphs below).
Such a result from a parametric perspective seems to confirm that by AõÈt-Sahalia
(1996a) from a nonparametric perspective.

3.2 Conditional Moment Graphs

The conditional moment vector of Equation (11) not only serves as the basis for
constructing a GMM estimator, but also provides intuitive diagnostics as condi-
tional mean, volatility, skewness, and kurtosis. The conditional mean and condi-
tional variance in discrete sampling intervals are equivalent to the drift and

8 This result differs from the typical empirical finding for the linear-drift CEV model, in that the elasticity

coefficient is mostly found to be in the range of 1.0--1.5 [Chan et al. (1992), Conley et al. (1997), Tauchen

(1997), Christoffersen and Diebold (2000)], possibly because the nonlinear-drift CEV model imposes an

unrealistic restriction across the drift and diffusion functions.
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volatility functions in instant times for the pure diffusion processes, but more
general in covering the jump-diffusion processes. The conditional skewness and
kurtosis provide natural assessment on how much the implied transitional density
deviates from the conditional normality. Higher-order conditional moments are
especially informative about the jump impact when the time horizon is longer
than zero, but the instantaneous higher-order moments cannot provide any new
information than the instantaneous drift and volatility.

Figure 4 plots the conditional mean (top panel) and the conditional variance
(bottom panel). It is clear that the square-root model has the least persistence in
level. Although the restricted CEV model has a potential nonlinear drift, the
estimated mean function is mostly linear and close to the square-root model. Of
interest is that the jump-diffusion model is the most persistent case, suggesting an
observational equivalence between occasional jumps and the near unit root. Our
preferred quadratic variance model has a linear mean function with a moderate
persistence among the four models. Turning to the conditional variance, both the
square-root model and the restricted CEV model produce nearly identical linear
volatility profiles, underpinning the clear rejection by the GMM specification tests.
The jump-diffusion process provides a slightly nonlinear quadratic variance func-
tion, due to the state-dependent jump-size specification (Jt�U[ÿart, art]) which
differs from the standard affine jump-diffusion models. Of course the most dra-
matic result comes from the U-shaped quadratic variance model, which partially
confirms the nonparametric finding of nonlinear volatility by AõÈt-Sahalia (1996a)
and the parametric finding of a CEV elasticity between 1.0 and 1.5 [Chan et al.
(1992), Conley et al. (1997), Tauchen (1997), Christoffersen and Diebold, (2000)].
The postwar U.S. history suggests that the interest rate volatility is certainly high
when the short-rate level is high, but the volatility is also elevated when the rate is
close to zero. Therefore a nonlinear dependence of short-rate volatility on its level
may be better captured by a quadratic variance model than by a standard affine
model.

Figure 5 depicts the conditional skewness and kurtosis functions and offers
some assessment of the departures from the conditional normality. From the top
panel we can see that both the square-root and the nonlinear CEV model give the
virtually same hyperbolic skewness function ---- shooting up at the lower end and
approaching zero at the higher end. The jump-diffusion process has a similar
profile, but a uniformly higher skewness once the short-rate level reaches greater
than 2%. The quadratic volatility model is unique in presenting a nonlinear
increasing skewness function that approaches ÿ0.1 at the low end and �0.1 at
the high end. Turning to the bottom panel, again, both the square-root and the
nonlinear CEV models give virtually the same hyperbolic kurtosis function ---- -
shooting up at the lower end and approaching three at the higher end. Note that
the jump-diffusion model gives an extraordinarily high kurtosis, ranging from 9 at
the lower end to 44 at the higher end (outside and above the picture range).
Usually introducing jumps helps to increase the model skewness and kurtosis,
but an unusually high kurtosis of 9--44 must be caused by the restrictive jump
specification (constant jump rate �t� � and uniform jump size Jt�U[ÿart, art]),
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which is imposed to ensure the parameter identification. The preferred quadratic
variance model has a nonlinear V-shaped kurtosis function for the short-rate level
between 0 and 8% and then mostly a constant above 3.02. In short, the quadratic
variance model produces unique nonlinear conditional skewness and kurtosis,
which are dramatically different from all other candidate models.

Figure 4 Conditional mean and variance.
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4 CONCLUSION

This article proposes an ItoÃ 's approach to generating the conditional moments for
continuous-time Markov processes and gives a characterization of the class of
admissible models. The resulting conditional moment vector forms the basis of a
natural GMM estimator. Monte Carlo evidence suggests that such a moment

Figure 5 Conditional skewness and kurtosis.
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generator and the related estimator behave reasonably well for a benchmark
square-root model. When applied to the empirical U.S. short-rate data, the proce-
dure singles out the quadratic variance model as the only unrejected specification
at the 1% level. The benchmark square-root model, the state-dependent
jump-diffusion process, and the nonlinear-drift CEV model all fail in the GMM
tests of overidentifying restrictions. Further diagnostics suggest that the U-shaped
conditional variance and nontrivial conditional skewness and kurtosis are impor-
tant in modeling the short-rate dynamics in the univariate setting. One important
extension is to estimate a multivariate asset return model with possible quadratic
volatility components.
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